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Abstract 

We show that four-dimensional conformal field theory is most naturally formulated on Kulkarni 
4-folds, i.e. real 4-folds endowed with an integrable quaternionic structure. This leads to a formalism 
that parallels very closely that of two-dimensional conformal field theory on Riemann surfaces. In 
this framework, the notion of Fueter analyticity, the quatemionic analog of complex analyticity, 
plays an essential role. Conformal fields appear as sections of appropriate either harmonic real or 
Fueter holomorphic quatemionic line bundles. In the free case, the field equations are statements of 
either harmonicity or Fueter holomorphicity of the relevant conformal fields. We obtain compact 
quaternionic expressions of such basic objects as the energy-momentum tensor and the gauge 
currents for some basic models in terms of Kulkami geometry. We also find a concise expression 
of the conformal anomaly and a quatemionic four-dimensional analog of the Schwarzian derivative 
describing the covariance of the quantum energy-momentum tensor. Finally, we analyze the operator 
product expansions of free fields. 0 1998 Elsevier Science B.V. 

Sut$ Class.: Quantum field theory 
1YYI MSC: 81Tl3; 81T90; 81T30 
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0. Introduction 

The success of two-dimensional conformal field theory both in the study of critical 
two-dimensional statistical mechanics and perturbative string theory is well known [l-3]. 
Higher-dimensional conformal field theory is similarly relevant in critical higher- 
dimensional statistical physics and may eventually play an important role in membrane 
theory 14-61. Unfortunately, so far it has failed to be as fruitful as its two-dimensional 
counterpart in spite of its considerable physical interest. 
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The basic reason of this failure is well-known. In two dimensions, the conformal alge- 
bra is infinite-dimensional and thus it strongly constraints the underlying field theory. It 
is precisely this that renders two-dimensional conformal field theory very predictive and 
computationally efficient. In ~1’ > 2 dimensions, the conformal algebra is instead only 
(n + I )((/ + 2)/2 dimensional and has therefore limited structural implications. There are. 
however, other features of two-dimensional conformal field theory, which turn out to be of 
considerable salience and may generalize to higher dimensions. 

In a two-dimensional conformal model on an oriented Riemann surface C, the scale of 
the background metric in the action can be absorbed into a multiplicative redefinition of the 
dynamical fields by an appropriate power of the scale. The action can then be expressed 
entirely in terms of the underlying conformal geometry. The fields become either functions 
or sections of certain holomorphic line bundles on C. In the free case, the field equations 
reduce to the condition of either harmonicity or holomorphicity of the fields. Complex 
analyticity is therefore a distinguished feature of these field theoretic models allowing the 
utilization of powerful methods of complex analysis such as the Cauchy integral formula 
and the Laurent expansion theorem. 

In a higher-dimensional conformal model on a manifold X. the scale of the background 
metric in the action can be similarly absorbed into a multiplicative redefinition of the fields 
by some power of the scale and the action is again expressible entirely in terms of the 
underlying conformal geometry, as in the two-dimensional case. One may wonder if there 
are higher-dimensional generalizations of two-dimensional complex analyticity of the same 
salience. The present paper aims to show that this is in fact so in four dimensions. The form 
of analyticity relevant to the four-dimensional case is Fueter’s quaternionic analyticity. This 
is stronger than real analyticity, as complex analyticity is, and yet is weak enough to be 
fulfilled by a wide class of functions. It also allows for a straightforward generalization of 
the main fundamental theorems of complex analysis 171. 

By definition, a complex function j’(z) of a complex variable z is holomorphic if it 
satisfies the well-known Cauchy-Riemann equations 8i.f = 0. Similarly, a quaternionic 
function j’(y) of a quaternionic variable y is right (left) Fueter holomorphic if it satisfies 
the right (left) Cauchy-Fueter equation ,t’&$ = 0 (3+!,,/’ = 0) ]7], where 

for q = JZ(’ + x’,j,. with .I- (I. s’ real, ,j,.. I‘ = I. 2. 3, being the standard generators of 
the quaternion field W. Here, due to the non-commutative nature of W, one distinguishes 
between left and right Fueter analyticity. 

We know that Riemann surfaces are the largest class of 2-folds allowing for global notions 
of complex analyticity. It is therefore natural to look for the largest class of 4-folds on which 
Fueter analyticity can be similarly globally defined. 

The closest four-dimensional analog of a Riemann surface is a Kulkarni 4-fold. A 
Kulkarni 4-fold X is a real 4-fold admitting an atlas of quaternionic coordinates q trans- 
forming as 
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for some constant matrix 

(see [S]). As the two-dimensional projective quaternionic group PGL(2, W) is isomorphic 
to the orientation preserving four-dimensional conformal group SOa(5, 1), a Kulkarni 4- 
fold is just an oriented real 4-fold with a conformal structure, much in the same way as 
a Riemann surface is an oriented 2-fold with a conformal structure. Note the analogy of 
the transformations (0.2) with the well-known complex Mobius transformations. In two 
dimensions, Mobius coordinates are just one of infinitely many choices of coordinates 
compatible with the underlying conformal structure. In four dimensions, the quatemionic 
coordinates 4 are conversely the only possible choice [9]. 

The Fueter operators (0.1) appear naturally in the geometry of Kulkarni 4-folds. One 
can construct a Fueter complex (a’(X. <*). S), where the {,, are certain quaternionic line 
bundles on X and 6 is a differential built out of ay and aq, and show its equivalence to the 
standard de Rham complex (a*(X), d). Exploiting this property, one can show that the 
spaces of closed (anti-)self-dual2-forms, which are two fundamental invariants of every real 
4-fold with an oriented conformal structure, are defined by a condition of right (left) Fueter 
holomorphicity. Kulkarni 4-folds can be further equipped with a harmonic real line bundle p 
and, in the spin case, with two right/left Fueter holomorphic quatemionic line bundles m*. 
The actions of the flat d’Alembertian 0 = *la? &, on real sections of p and of the Fueter 
operator & = a@R d@ (&_ = dq +J on quaternionic sections of m+ (rriT-) are therefore 
globally defined. These line bundles and operators are of considerable salience because of 
their relation with the conformal d’ Alembertian and the Dirac operator. respectively. All the 
above indicates that Fueter analyticity is a natural notion of regularity on Kulkarni 4-folds. 

The family of Kulkarni 4-fold is very vast. It contains such basic examples as S” and T’ 

and topologically very complicated 4-folds as the oriented four-dimensional Clifford-Klein 
forms T\aB’, and r\Bt ((w”), the oriented four-dimensional Hopf manifolds f \(S’ x S3) 
and the flat sphere bundles on a Riemann surface Br (Iw’) xc; S’. Note that all the above 
4-folds, like all oriented Riemann surfaces, are Kleinian manifolds. 

A Kulkarni 4-fold X is naturally endowed with a canonical conformal class of locally 
conformally flat metrics. These are the natural metrics for X. The Riemann 2-form, the 
Ricci I-form and the Ricci scalar of such metrics and all the objects derived from them 
have particularly simple compact expressions in terms of the scale of the metric and the 
underlying Kulkarni structure. Exploiting Fueter calculus, one can also derive the general 
structure of Einstein locally conformally flat metrics. when they exist. Note once more the 
analogy with the geometry of Riemann surfaces. However, while, in the case of Riemann 
surfaces, every metric is automatically locally conformally flat and Einstein, the same is no 
longer true in the case of Kulkami 4-folds. 

On a Kulkarni 4-fold X equipped with a compatible locally conformally flat metric, the 
analogy of the geometry of four- and two-dimensional conformal field theory becomes 
manifest. The fields appear as sections of either p or ,* or derived line bundles and the 
action can be expressed fully in the language of Kulkarni geometry. For instance, the action 
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of the standard conformal complex boson model with s/h coupling can be cast as 

(0.3) 

with 4 a complex section of p. The field equations of 4 read simply as ??#I = 0 and thus 
imply the harmonicity of 4. Similarly, the action of the standard massless Dirac fermion 
model can be cast as 

with $’ complex Grassman sections of m*. * is similar to the Hodge star, but it depends 
only on the Kulkarni geometry of X. The field equations of I,/+ ($-) read as $+a~ = 0 
(&$I- = 0) and imply the right (left) Fueter holomorphicity of $+ (I/-). The energy- 
momentum tensor and the gauge currents have similarly simple expressions and geometri- 
cally clear properties in this formalism. 

In the quantum case, the operator product expansions of the quantum fields may be 
formulated and analyzed exploiting harmonicity and Fueter holomorphicity, in a way very 
close in spirit to the analogous approach of two-dimensional conformal field theory. One 
can further define a quaternionic conformally invariant quantum energy-momentum tensor 
T,. The Ward identity obeyed by this can be expressed in terms of the underlying Kulkarni 
geometry in the form 

d*T,=O (0.5) 

up to contact terms. Under a coordinate change of the form (0.2). T, transforms as 

L = hap (Tcp + eaB ). (0.6) 

Here, ecup depends only on the underlying conformal geometry. So, the matching relation 
(0.6) is completely analogous to that of the conformally invariant energy-momentum tensor 
in two-dimensional conformal field theory and eLVp is a four-dimensional generalization of 
the Schwarzian derivative. 

The present paper is an attempt at generalizing some of the powerful techniques of 
two-dimensional conformal field theory to higher-dimensional field theory in a geomet- 
ric perspective. It is similar in spirit to but quite different in approach from the work of 
Refs. [lO,l l]. 

In Sections l-3, we provide a detailed account of the quaternionic geometry of Kulkami 
4-folds in a way that parallels as much as possible the standard treatment of the geometry 
of Riemann surfaces. In Sections 4 and 5, we analyze the geometric properties of a four- 
dimensional conformal field theory on a Kulkarni 4-fold, respectively, in the classical and 
quantum case. In Section 6, we provide a brief outlook of future developments. 
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1. Quaternionic linear algebra and group theory 

In this paper, we argue that the geometry underlying four-dimensional conformal field 
theory is quaternionic. In this section. we review briefly basic facts of quaternionic linear 
algebra and group theory. 

The quaternion field W is the non-commutative field generated over iw by the symbols I 
and ,j,., r = 1.2. 3, subject to the relation ’ 

j,.A = -&, + hfjt. (1.1) 

Hence, a generic quaternion a E W can be written as 

LI = (I” + a” j,. . a”. d E LIZ. (I.?) 

Quaternionic conjugation is defined by 

l? = J’ - CIr,jr. (1.3) 

The real and imaginary parts of a quaternion a E W are defined, in analogy to the complex 
case as ’ 3 

Rea = (;)(a + U) = (lo, lma = ;(a - Z) = n” j,. (1.4) 

The absolute value of a quaternion a E W is given by 

IllI = (Za) l/2_ 00 - N N + da”. (1.5) 

The space W” can be given the structure of right W linear space in natural fashion. Further, 
it can be equipped with the right sesquilinear scalar product defined by 

(1.6) 
k=l 

The n-dimensional quaternionic general linear group GL(n. W) is the group of invertible 
II x n matrices with entries in W. Any T E GL(n, W) defines by left matrix action a right 
W linear operator on W”. The n-dimensional symplectic group Sp(n) is the subgroup of 
GL(n. W) formed by those operators leaving the scalar product (1.6) invariant. 

W”, the n-dimensional quaternionic projective space, is the quotient of W+’ - (0) by 
the right multiplicative action of the group W X of non-zero quatemions. 

The group PGL(n + 1, W) is defined as 

PGL(n + 1. W) = GL(n + 1, W)/iR,, (1.7) 

where [w, is embedded in GL(n + 1. W) as the subgroup iw, lrl+l. PGL(n + 1. E-0) acts on 
W$” by linear fractional transformations. 

’ In this paper, we adopt the following conventions. The early Latin indices a through d and middle Latin 
indices i through m take the values 0, I, 2.3. The middle Latin indices e through g and the late Latin indices 
r through u take the values I, 2. 3. Sum over repeated indices is understood unless they appear on both sides 
of the same identity. 



The case II = I will be of special relevance in what follows. GL( 1, W) is simply the 
group of non-zero quaternions. i.e. GL( I. HI) 2 W, Sp( I ) is the group of quaternions ot 
unit absolute value, so Sp( 1) 2 SU(2). 

Eq. (1.2) defines an isomorphism Iw3 2 H’. Under such an identification, one has [ 121 

Spin(4) 2: Sp( I) x Sp( 1). (1.8) 

SO(4) 2 (Sp(l) x Sp(l))/B2. (1.9) 

whereZzisembeddedinSp(l) x Sp(l)as{*(l). 11)). 
Similarly, S” ” HP’. The group of orientation preserving conformal transformations 

of S4 is the connected component of the identity of SO(5. I), SOu(5, 1). The following 
fundamental isomorphism holds [8,9]: 

SOo(5, 1) g PGL(2. HI). (1.10) 

Explicitly, the action of PGL(2, W) on HP is given by 

T(a) = (TllU + T12)(T21a + T22)P (n E HP’) 

= (-aT2;’ + T,$‘(aT,-j’ - T,;‘) (1.11) 

for T E PGL(2, W). The above isomorphism fails to hold in 4n dimensions with n > I, 
since in fact SOu(4n + 1, 1) 7 PGL(n + 1, W). This is why the four-dimensional case is 

so special. 

2. The Kulkarni 4-folds 

In this paper, we argue that four-dimensional conformal field theory is formulated most 
naturally on a class of 4-folds admitting an integrable quaternionic structure, the Kulkarni 
4-folds. In the first part of this section, we discuss the local and global quatemionic geometry 
of such 4-folds. We define the Fueter complex and show its equivalence to the de Rham 
complex. In the second part, we introduce the natural differential operators of a Kulkami 
4-fold, the d’Alembertian and the Fueter operators, and show their global definition. In the 
third and final part, we illustrate several basic examples. 

2.1. Local quaternionic dijferential geometry oj’reul4@ds 

Let X be a real 4-fold. Let x be a local coordinate of X of domain U. The four components 
xi, i = 0. 1,2,3, of x can be assembled into a quatemionic coordinate 4 of the same domain 
given by 

q = x0 + xr,j,-. (2.1) 

The coordinate vector fields axi, i = 0, 1.2, 3, can be similarly organized into a quater- 
nionic vector field ay given by 

a<, = &&o - a,,&). (2.2) 
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Also, 84 = 3,. a, is a quaternionic differential operator, called Fueter operator, acting on the 
space of smooth W-valued functions f on U. Since the quaternion field is non-commutative, 
one must distinguish a left and a right action of i$: f a@ = (1/4)(a,u.f - a,,.,fj,) and 
aCjLf = (i/4)(aXof - j,a,,.,f). If f is [W-valued. then .fa@ = a+f = a,f. ./‘ is right 
(left) Fueter holomorphic if .f‘$$ = 0 (iQl_,f = 0). 

The linearly independent wedge products dx” A A dx’)l with 0 5 il < < i,, r: 1 

and 1 5 p 5 4 can similarly be assembled into a distinguished set of alternate wedge 
products of the differentials dq and dq: 

dq = dx” + dx' j,. , 

-i dq A dq = (dx” A dx’ + $crvt dx” A dx’),j,. 

+i dq A dq = (dx” A dx’ - it,.,Yr dx’ A dx’)jt. 

i dq A dq A dq = dx’ A dx= A dx” - ;c,-.\, dx” A dx-’ A dx”j,, 

-&dqr\dqr\dqAdq 

(3.3) 

(2.4) 

(2.5) 

= +A dq A dq A dq A dq = dx” A dx ’ P\ dx’ A dx”. (2.6) 

All the other combinations of dq and dq of the same type can be obtained from these by 
conjugation. Denoting by * the Hodge star operator with respect to the flat metric h = 
dx’ @ dxi on U. one has 

-; dq A dq = *(-$ dq A dq), ;dqr\ dq=-&dir\ dq), (2.7) 

idq/\ dqr\ dq=*dq. (2.X) 

-&dqr\ dir\ dqA dq=+&dqr\ dqr\ dqr\ dy=*l. (3 9) _. 

For any p-form w = (1 /p!)oi, . ..., dx’l A . A d.x’iJ on U with 1 ( p 5 4, one detines 
the quatemionic components of w by: 

wy = w(a,) = ;(w - wI j,). p= 1. (2.10) 

wl+/ = da+ a,) = -A(wo, + ~e,,s,w,st)j,-. p = 2, 

wyq = 04aq. a,) = +$bOr - &,..yr(c~sr),jr. 
(2.1 I) 

(2.12, 

(2.13) 

The remaining components are wg = w(a,), p = 1, and wiycl = @(a,, ay. a,), p = 3. and 
are obtained by conjugation: WY = w(, and wyqy = ~ -wC,qq. One can express w in terms of 
its components as follows: 

w=4Re(w4dq), p= 1, (2.14) 

w = -2Re(wy,, dq A dq) - 2Re(wgy dq A dq). p = 2. (2.15) 

w = -$Re(wqqq dq A dq A dq). y = 3. (2.16) 
4 w = ~J’L’~~Q~ dq A dq A dq A dq = $I+~~~ d? A dq A dq A dq, p = 4. (2.17) 
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Note that, when ,I? = 2, w is *-self-dual (*-anti-self-dual) if and only if tiJ(,? = 0 (oJ+~ = 0). 
From (2.10)-(2. I.?), for any p-form OI on U with 0 ( p ( 3. one has 

(dw), = C&),/R = i)<,LCI>. 1’ = 0. (2.18) 

(dw),, = i+,o, - wl/&,R. /’ = 1. 
(2.19) 

(2.20) 

(2.21) 
(dwL,qc,q = 2(&,~~q~q - &/jyal/R). 

These identities show the relation between the de Rham differential d and the Fueter operator 

&/ . 

2.2. Kulkarni 4jtild.y 

The Kulkarni 4n-folds are the real 4n-folds uniformized by (HP”. PGL(n + 1, W)) [8]. 
This condition turns out to be very restrictive. We are interested in the case where n = 1. 

A Kulkami 4-fold X is a real 4-fold ’ with an atlas {(U,, qa)) of quatemionic coordinates 
such that, for U, n Ug # M, there is T,p E PGL(2, W) such that 

q, = T@(9B). 

where the right-hand side is given by (1.1 I ). 

(2.22) 

2.3. Globul quaternionic differential geometry of Kulkurni 4-folds 

Let X be a Kulkarni 4-fold. The local quaternionic tensorial structures defined on each 
patch I/, of X, as described above, have very simple covariance properties under the coor- 
dinate transformations (2.22) as we shall illustrate next. 

For U, n Up # 0, we define the matching functions 

‘7& = -qcY~u~zl + Tagll3 'IaB = LfY2lqg + Tcg22' (2.23) 

The v,$ are nowhere vanishing on U, f’ lJ,+ since, as will be shown in a moment, the 
invertible matching operators of the basic quaternionic tensorial structures are polynomial 
in such objects. 

The matching relation of the vector fields a,, of Eq. (2.2) is 

Proo$ By differentiating (2.22) using (I. 1 I ), one gets (2.25) below, from which one reads 
off the identity &o;xz + i),pix$j?, = $$(Sui + Sri jr)(nip)-‘. Using this relation and (2.2) 
it is straightforward to derive (2.24). 0 

2 In this paper, we shall assume, unless otherwise stated, that a manifold has no boundary 
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(2.25) 

(2.26) 

(2.27) 

(2.28) 

The Hodge star operators *a associated with the flat metrics h, defined above (2.7) match as 

* U = (lrl~~ll’~,Pl-‘)-““~~) *p on T7 -forms. (2.29) 

P uoojI Relation (2.25) follows immediately from differentiating (2.22) using (1.11). Rela- 
tions (2.26)-(2.28) are trivial consequences of (2.25). Relation (2.29) follows from com- 
paring (2.26)-(2.28) with (2.7)-(2.9). 0 

The collection T = {TQ] associated with the coordinate changes (2.22) defines a flat 
PGL(2, W) 1 -cocycle on X. In general, this cocycle cannot be lifted to GL(2, W) by choosing 
suitable GL(2, W) representatives of the Tab E PGL(2. W). One has instead a relation of 
the form 

Tuy = wapyTapTp,. W,by = fl, 

whenever lJ, n Ug n U, # Lil, where w = {w,gY} is a flat B2 2-cocycle on X. 

(2.30) 

Proofi Since T is a flat PGL(2. W) I-cocycle on X and the center of PGL(2, W) is [w, 12, 
(2.30) holds with w a flat (w, 2-cocycle on X, by a standard theorem of obstruction the- 
ory. From here, using (2.23). one can show that relation (2.31) below holds. Now. set 
&b = lr~&n,/r ) I/‘. Now, using the relation Tap Tpa = 12, implied by (2.30) one can 
show that either T,gzt # 0 and Tpw2t # 0 or Talpxl = 0 and Tga2t = 0 and, using 
(2.23) one can further verify that &b = ( ITap IlTp,z~ l-‘)“2 in the former case and 

@up = (ILg11lITfia221- 1 I “2 in the latter case. &p is thus a positive constant and, from its 
definition, it is clear that &, = I w,py I&p@by whenever defined. Hence, Iw I = { IUJ,P~ I} 

is a trivial flat [w+ 2-cocycle on X. So, choices can be made so that IO is a ;22 2-cocycle 
on X. n 

From (2.23) and (2.30), it follows that 

17+ ffY = WlYBy ‘7,tp V& (2.31) 

when U, n Up n U, # 8. So, w is the obstruction preventing the smooth GL( 1, W) 1 -cochain 
q* = {$$} on X from being a 1-cocycle. 

Note that 1 v* I = [ I($ I) is in any case a smooth [w+ 1 cocycle. 



The flat GL(2. W) 1 -cochain T is defined up to a redefinition of the form 7& + (‘u/i 7&. 
where C’ = (c,p) is a flat [w, I cocycle. Correspondingly, the smooth GL( I. HI) I -cochain 
17* gets redefined as q:V + cup rj,$, Now. the flat Iw, 1 cocycle (‘can be viewed canonically 
as a pair (II. a), where II and a are, respectively. a flat [w+ I -cocycle and a flat Z;? 1 -cocycle. 
The geometric structures, which we shall construct below, are independent from II but do 
depend on or in general. 

Define 

where for u, u E W, 2 GL( 1, I-U), UL @ uR is the [w linear operator on &!I defined by 
(L~L @ uR)U = uau-’ for a E W. Then, {I and (3 are smooth (GL(1, HI) x GL(1, W))/[w, 
I-cocycles, where I%, is embedded into GL( 1~ W) x GL( 1, HI) as [w, (11, 11); C,’ is a smooth 
PGL( I ~ W) 1-cocycle; 5‘4 is a smooth [w+ I-cocycle. 

Pmc$ This follows readily from the definitions and from (2.3 1). 0 

Let CL) E Q”(X) be a p-form. ’ Using (2.10)-(2.13) we can associate with w the collec- 
tion of its local components on the coordinate patches U,. If w E Q’(X), wq = (wyoc) E 
R”(X. <t) and the map w + wq is an [W-linear isomorphism of Q’(X) onto 0”(X. <I). 
On account of (2.29) the spaces Q **(X) of *-(anti-)self-dual2-forms on X are covariantly 
defined. If w E C*+(X), OJ+, = (w+,~} E Qn(X, <,‘) and the map w -+ wqC, is an R-linear 
isomorphism of Q*+(X) onto Qn(X, cc) and, similarly, if w E Q’-(X), wyi = {Q,~~) E 
R”(X, <,) and the map w + w4y is an R-linear isomorphism of Q2-(X) onto Q”(X. <,). 
lfw E Q’(X)A& = (oy~yo] E R”(X. (3) and the map w -+ wyiv is an R-linear isomor- 
phism of Q”(X) onto 1;2’(X, (3). Finally, if(r) E Q4(X), w+,+, = (w+,~~~} E R”(X. 5~) 
and c++,~ = ( wyqqqLv } E R”(X, (4) and the maps w + Q+,+, and w + CA+,+,? are both 
R-linear isomorphisms of Q”(X) onto R’(X. <A). 

PI-oc!f: This follows easily from the definition of the quaternionic components of the form w. 
given in (2.10)-(2.13) and from (2.24) upon taking (2.32)-(2.35) into account. For II = 1, 
one has C+ = ~(a,,) = ~(rl;~&,p(~$-‘) = rl;+j(&,p)(~&-’ = CI~BW~S. The proof 
for the other p values is analogous. El 

By the above isomorphisms, the standard de Rham complex 

3 Let V be a F vector space. When c is a smooth GL( V) 1 -cocycle on the non-empty open subset 0 of X, 
we denote by ~2 P (0.6) the F vector space of p-form sections of 6 on 0. In particular, $2 /J (0) is the space 
of real II-forms on 0. 
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d+ Q2+(X) d 

no(x) 5 Q’(X) 
P L 

Qj(X) 5 Q4(X) 

I 7 
d- G?-(X) d 

123 

(2.36) 

is equivalent to the Fueter complex 

s+ RO(X. (2+) s 

no(x) A QO(X Cl) 
7 L 

BO(X. {3) -L RO(X (41, (2.37) 

s- 0(X. (-,-, 

where the Fueter operators S are defined by the right-hand sides of (2.18)-(2.21), with 
S+ and 6- corresponding, respectively, to the first and second expression (2.19). The two 
definitions of the last 6 differ only by their sign. 

From here, one sees that a 2-form w E Q*+(X) (a) E Q*-(X)) is closed if and only if 
wqqE$R = 0 (&+w4q = 0), i.e. if and only if wqq (Q+Y) is right (left) Fueter holomorphic. 

Pmu$ Let o E fi2+(X). Then, wqq = 0. So, if further dw = 0, one has W&aiR = 
--i),~wj~ = -i(d~)~q, = 0, by (2.11) and (2.20). The corresponding statement for a 
closed w E Q2-(X) can be proven in analogous manner. 0 

The spaces of closed (anti-)self-dual 2-forms are important invariants of any real 4-fold 
endowed with a conformal structure. The above proposition shows that, on a Kulkami 4- 
fold, such spaces are defined by a condition of Fueter holomorphicity. We believe that this 
result highlights quite clearly the relevance of Fueter analyticity to the geometry of Kulkarni 
4-folds. 

-7.4. The I-cocycle p and the d’Alembert operator 0 4 

Let X be a Kulkami 4-fold. We set 

P = IC’ @ IV 

Then p is a smooth R+ I-cocycle. 

Proqf: This follows immediately from the definition and from (2.31). 

Let F E s2”(X, p). Set 

??F=i$a,F*l 

on each coordinate patch. Then OF = ((OF),} E Q4(X, p-l). 

(2.38) 

0 

(2.39) 

4 In the mathematical literature, this operator is usually called Laplacian and is denoted by A. In the spirit 
of field theory, we rather think of it as the euclidean version of the d’Alembert operator 0. 



i$ d, ,/’ * I = k d * d,J’. (7.40, 

This relation can be easily checked by evaluating the right-hand side in terms of the compo- 
nents of the real coordinate x contained in q (cf. Eq. (2.1)). Using (2.29) (2.40) and (2.38) 
and the matching relation F, = p,p Fb, one finds 

i3q,il,, F, klu I = -dyp8,p(piA ) Fp *p 1 + p$ 8qpi3qb Fp *p I. (2.41) 

Now, using the relation T,p TB, = 12 implied by (2.30), one can show that either 7&21 # 0 
and Tbo2t # 0 or Tap21 = 0 and TbLy?t = 0 and. using further (2.23) one can verify that 

Pup = /~a~:!lII~~u2IIlYp + q&Lprrl 2 in the former case and polg = / T,,qz I I Tpa 11 I in 
the latter case. Using these expressions, one finds that 

+p i&B (Pii ) = 0 (2.42) 

by direct computation. The statement follows now readily from (2.41) and (2.42). 0 

Note that, in termsoftherealcoordinatex containedinq, 0 F = &(&~&()+d\-,.ij.~~) F* 1, 
So. U is essentially the euclidean d’Alembertian operator. Relation (2.42) shows then that 
the 1 -cocycle p is harmonic. This allows for a global definition ofharmonicity on a Kulkami 
4-fold X. An element F E Q”(X. p) is said harmonic if 0 F = 0. In such a case, F is given 
locally by the real part of some Fueter holomorphic function K 171. 

Let X be a Kulkarni 4-fold such that 11) = I. We set 

where for II E W, 2 GL( 1, W), UK (LIL) is the the left (right) W linear operator on W defined 
by I(KCI = UI,-’ (ut,o = ua) for LZ E W. Then, m * is a smooth GL( 1, W) 1 -cocycle on X. 

Pi-oc?fI This follows readily from (2.31). taking into account that UJ = 1 in this case, by 
assumption. n 

Note that u* depends on the choice of a izz I-cocycle n. as discussed above (2.32). We 
assume that a choice is made once and for all. 

For @ E 1;2O(X, m+) and @ E 52’(X. m-), we set 

@,a~ = @a,R dq. &,‘P = d$,r,!P (2.44) 

on each coordinate patch. Then @& = ((@i)R)u) E R’(X. m+) and $p = {(&@),) E 
Q’(X, m_). 

Prooj: We show only that @aR E 6’ ’ (X, m+), since the proof of the corresponding state- 
ment for P is totally analogous. For the rest of the proof, introducing a slightly inconsistent 
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notation, we denote by ZD* the matching functions defined by (2.43) with the indices R. L 
suppressed. Let (U, q) be a quaternionic chart of X and let ,f E Q’(u) @ W. Then one has 

fa+*i=idfr\*dq. (2.45) 

Eq. (2.45) can be easily be checked by expressing both sides in terms of the components of 
the real coordinate x contained in q. Using (2.45) and the matching relation @(y = @pm&. 
one has 

@cu&R *(y 1 = 4 d@p A TUT+ Pa *a dq, + @b m,+ i$olR *u 1. (2.46) 

From (2.43) and (2.23), one computes 

m& ~~&YR = 1 ‘I,,g 1 + -s’Zt~~~l-3’2(~~~[-~~7j~~l--‘(lil~~t2)~y,R 

- ~lrlpul-‘(lrl~~l’)ayaRl f rl&aqaR~ 

= -~l~~~l-5:21~~al-3i2 olg’[qa?m& + 7@ap211. (2.47) 

Using the relation T,B Tb, = 12, following from (2.30). and (2.23), one finds that 

Tbu21 r& + q&p21 = 0. (2.48) 

Combining (2.47) and (2.48), one concludes that 

$&,R = 0. (2.49) 

From (2.8). (2.27) and (2.43), one verifies further that 

&& *u dq, = ; hB dqgzi& (2.50) 

By (2.46), (2.49) and (2.50). one has, using (2.45), 

@l&UR *u 1 = $ d4bp A *@ dqPmia = @Pa@R~~~ *fi 1. (2.51) 

From this relation, using (2.43), (2.25) and (2.29) with 17 = 0, it is a simple matter to check 
that (03~)~ = (@&)PzP&, showing the statement. 0 

Eq. (2.49) and its left analog show that the I-cocycle m+ (m-) is right (left) Fueter 
holomorphic. This allows for a global definition of Fueter holomorphicity on a Kulkarni 4- 
fold X. An element @ E R”(X, m+) (9 E fl’(X, m-)) is right (left) Fueter holomorphic 
if @i& = 0 (&@ = 0). 

2.6. Topological properties of Kulkarni 4-fold 

On account of the isomorphism (1. lo), (2.22) entails that a Kulkami 4-fold is just a real 
4-fold with an integrable oriented conformal structure. 

A Kulkami 4-fold structure entails a reduction of the structure group of X from GL(4, rW) 
to (GL(1, W) x GL(1, W))/[w,. 



Pm($ Indeed, from (2.24). it appears that the smooth 1 -cocycle implementing the matching 
relations in TX is the (GL( 1, W) x GL( I. H))/R, I-cocycle nt_ @ vi. rj 

The resulting (GL( 1, W) x GL( 1. W))/R, structure on X. being yielded by coordinates. 
is integrable. 

Since (GL( 1, W) x GL( 1, W))/R, is a connected group, X is oriented. Hence. the first 
Stieffel-Whitney class of X vanishes: 

101(X) = 1. (2.52) 

The flat Z2 2-cocycle w appearing in (2.30) defines a cohomology class UI E H’(X, Zz). 
It can be seen that w is precisely the second Stieffel-Whitney class of X: 

UQ(X) = UJ. (2.53) 

Pruc?$ In+] @I 1 n- 1-l is a smooth R+ 1-cocycle, hence, it is trivial. So, the smooth (GL( 1, W) 
xGL(1, W))/R, I-cocycle nL @ 17: is equivalent to the smooth (Sp(1) x Sp(l))/Z? l- 
cocycle HL 8 Qz, where .Zz is embedded in Sp(1) x Sp(1) as (f(lt, 11)) and H* = 
/n*]-’ @I ?I* is an Sp( 1) 1-cochain. This yields a reduction of the structure group of X 
from (GL( 1, W) x GL( 1, W))/R, to (Sp( I) x Sp( l))/Zl. Now 0* satisfies relation (2.3 1) 
with q* substituted by Q*. From the isomorphisms (1.8) and (1.9), it follows then that 
the 122 2-cocycle w is precisely the obstruction to lifting the structure group of X from 
SO(4) to Spin(4). This identifies ul as a representative of the second Stieffel-Whitney class 
of x. u 

So, the spin Kulkarni 4-folds are precisely those for which UJ = 1. In such a case, the spin 
structures correspond precisely to the choices of the B2 1 -cocycle LZ on X discussed above 
(2.32). Indeed, as is well-known, such choices describe the cohomology group H1 (X, Z2). 

As X is endowed with an integrable oriented conformal structure. the first Pontryagin 
class of X is zero: 

PI(X) = 0. (2.54) 

Proo$ The integrability of the conformal structure implies the existence of locally con- 
formally flat metrics, whose Weyl 2-form vanishes [9]. The Pontryagin density, which is 
quadratic in the components of the Weyl 2-form, consequently vanishes too. 0 

Let X be compact. As pt (X) = 0, the signature of X vanishes as well, a(X) = 0. This 
entails that the Euler characteristic of X is even: 

x(X) E 2Z. (2.55) 

If X is compact, then (2.54) and (2.55) imply that X bounds an oriented 5-fold by the 
Thorn Pontryagin theorem [S]. 

All the 1-cocycles defined in the previous sections yield smooth vector bundles on X 
in the usual manner. In particular, [t and 53 are smooth (GL( 1, E-4) x GL( 1. W))/R, line 



bundles, the <,” are smooth PGL( 1, W) line bundles, (4 and p are smooth R+ line bundles 
and the EJ’ are GL( 1, W) line bundles. 

The operator 0 is elliptic. Therefore, when X is compact, the subspace of the harmonic 
F E Q”(X, p) is finite-dimensional. The operators &J are also elliptic. Hence, if X is com- 
pact, the subspace of right (left) Fueter holomorphic @ E Q”(X, mf) (Iy E Q’(X. m-)) 
is similarly finite-dimensional. In the next section, we shall show that 0 and the & are 
related, respectively. to the conformal d’alembertian and to a certain Dirac operator. This 
will allow us to derive vanishing theorems. 

2.7. Kulkuvni automorphisms 

An orientation preserving diffeomorphism f of X is a Kulkami automorphism of X if 

%YO.f oqp’, whenever defined, is a restriction of some element of PGL(2, W). The Kulkarni 
automorphisms of X form a group under composition, Aut (X). 

2.X. Examples of Kulkurni 4-folds 

The basic example of Kulkarni 4-fold is E-UP’. As a 4-fold E-UP’ Z S4. Indeed, WP’ 
can be covered by two quaternionic charts (qa. U,), a = I, 2, where U, = {(PI, pz) E 
iM’- {(O, O)}[P~ # 0)/W, andql = pap;’ andq2 = -PIP;‘. Onehasq2 = -(ql)-’ on 
the overlap UI n U2. Under the isomorphism W’ 2 R4, this matching relation is equivalent 
to that of the customary stereographic projection of S4. Clearly, Aut(WP’) = PGL(2. W). 
Also. w(W~‘) = 1. 

Let D be a simply connected non-empty open subset of WP’. Then D is a Kulkarni 
4-fold with the Kulkami structure induced by that of HP’. When D is a proper subset 
of W[FD’, then D can be covered by a single quatemionic chart (q, U) with U = D. The 
automorphism group Aut(D) of D is the subgroup of PGL(2, W) mapping D onto itself. 
Clearly, w(D) = 1. 

A Kleinian group r for D is a subgroup of Aut(D) acting freely and properly discon- 
tinuously on D [9,13]. The Kleinian manifold f \ D is then a Kulkami 4-fold, as it is a real 
4-fold uniformized by (E-UP’. PGL(2, E-U)). Aut(T\D) can be identified with the normalizer 
of r in Aut (D). w(r\ D) = 1 if and only if r can be lifted to a subgroup of GL(2. Rii). 

We consider next several standard examples. 
(i) D = HP’. Aut(W[FD’) = PGL(2. W), as shown earlier. By a simple argument based on 

Lefschetz’s fixed point theorem, it is easy to see that there is no non-trivial Kleinian 
group f for WP’, since every T E PGL(2. W) has at least a fixed point in iHIp’. Thus, 
there are no Kulkarni 4-folds covered by WLFD’ except for WP’ itself. 

(ii) D = RI’. It appears that W’ 2: lR4, as a 4-fold. Aut(W’) is the subgroup of PGL(2. W) 
formed by those T such that T21 = 0. There are plenty of Kleinian groups f for W’. 
Among these, the orientation preserving four-dimensional Bieberbach groups, which 
have been classified [ 131. In this way, the Kulkarni 4-folds r\W’ covered by W’ include 
the 4-torus T4 and the oriented 4-folds finitely covered by it. 
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(iii) II = B’(W’). As a4-fold, B’(W’) Z B’([w“), the unit ball in IQ“. Aut(B’(W’)) is the 
subgroupofPGL(2, W)formedbythoseTsuchthatIT”I’-IT2’/* = lT2~1’-IT’212 = 
k for some k E [w+ and ?’ I TI 2 - T2 1 T22 = 0. There are plenty of Kleinian groups r for 
B’(W’). The Kulkarni 4-folds f \B’ (W’) covered by B’ (W’) are the four-dimensional 
analog of higher genus Riemann surfaces. 

(iv) D = [HI’ - (0). As a4-fold, W’ - (0) 2 iw” - (0). Aut(W’ - {0}) contains as a subgroup 
of index 2 the subgroup of PGL(2. W) formed by those T such that T’2 = T2’ = 0. 
There are plenty of Kleinian groups r for W’ - (0). Among the Kulkarni 4-folds 
T\(W’ - (0)) covered by W’ - (01, there are the oriented four-dimensional Hopf 
manifolds, that is S’ x S’ and the oriented compact 4-folds finitely covered by it. 

(v) I> = W’ - W’. As a 4-fold, W’ - [w’ 2 1w’ - iw’. There are many Kleinian groups r 
for W’ - I%‘. The Kulkarni 4-folds f \(W’ - [w’) covered by W’ - iw’ include the flat 
S’ fiber bundle on a compact Riemann surface, as iw” - [w’ 2 B’ (iw2) x S2. 

3. The geometry of Kulkarni 4-folds from a Riemannian point of view 

Four-dimensional conformal field theory is most naturally formulated in a locally con- 
formally flat metric background. One expects calculations to simplify considerably if this 
background has special properties, such as having a large group of isometries or being 
Einstein. A Kulkarni 4-fold is equipped with a canonical conformal equivalence class of 
locally conformally flat metrics. These are studied in the first part of this section using 
the quatemionic geometric framework introduced above. We also derive conditions for the 
existence of an Einstein representative in the class and its general form, when it exists. 
In the second part of the section, we show that the operators 0 and the &J are related, 
respectively, to the conformal d’alembertian and to a certain Dirac operator. This will allow 
us to derive vanishing theorems a la Bochner for their kernels. Examples are provided in 
the third and final part of the section. 

3.1. Local quaternionic Riemannian geometry of a real 4;fold 

Let X be a real 4-fold. Let x be a local coordinate of X of domain U. On U, one can 
define the conformally flat vierbein 

e,, = e-‘PS6a,i. (3.1) 

Its dual vierbein is 

e,” = e9&; dx’. (3.2) 

The associated metric is 

g = e,” @ez = e29dxi @ dx’. (3.3) 

The components of the vierbein e,, a = 0, 1,2. 3, can be assembled into the quatemionic 

einbein 
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e = +(eo - ef jf). (3.4) 

By (2.2) and (3. l), e is given by 

e = eP&,. (3.5) 

Similarly, the components of the dual vierbein e,:. u = 0, 1.2. 3, can be assembled into the 
quaternionic dual einbein 

” P = el + e: j,f. (3.6) 

From (2.3) and (3.2), one has 

p” = eP dq. (3.7) 

The metric g is then given by 

R = Re(e” @ e”) = e2P Re(dy 18 dq). (3.8) 

The Hodge star operator * of g is related to * as 

* = c-2tP-2h7 * on p -forms. (3.9) 

Many formulae of Riemannian geometry take a particularly compact form when ex- 
pressed in terms of e and e”. Below, we shall adopt the Cartan formulation of Riemannian 
geometry. 

The components of the spin connection w,t, 1 -form can be organized into the two quater- 
nionic 1 -forms 

w+ ZZ -t (woo + wo.fJf + w,oje + w,,fjr.lf) = i (woR + &fRWe,f) jK, 
(3.10) 

w = +i(woo + wo,fjf’ + weoL + Wyf.L.jf) = i(woR - &efxWef)jg. 

Explicitly, the w* are given by the formulae 

W+ = -2Im(e”e(cp)), o- = -2Im(e(cp)e”). (3.11) 

The components of the Riemann 2-form Rnh can be assembled into the two quaternionic 
‘-forms 

Rf = -$(&a + Ro,fJf + &oje + &fjr.lf) = i(Rol: + &fg&j)jx. 
(3.12) 

R- = +$(Roo + Rofjf + R,o.L + R,f.Lj,f) = ~(Ro~ - &ygRrf.)jg. 

By explicit computation, one finds 

R+ = 2 Im(e” A (de(q) f 2le(~)l*?“)). 
(3.13) 

R- = -2Im((de(cp) + 21r(p)12Zv) A e”). 

The components of the Ricci l-form S, can be organized into the quatemionic l-form 

S = So + Se&. (3.14) 



This is explicitly given by 

S = -8[dP(cp) + 2(?(r(cp)) + 3/~((p)]‘)r‘ 1. 

Finally, the Ricci scalar s is given by 

s = -96[Z(e((p)) + ~]L+I)]~]. 

(3.15) 

(3.16) 

Pmo$ We give only a sketch. For a conformally flat metric, one has 

Wuh = eb&k,; - %h’k;. (3.17) 

From this relation, using the standard definitions of the Riemann 2-form Rczb = dw,/, + 
w,~ A w,.h, the Ricci l-form S, = i(eb)Rb, and the Ricci scalar s = l(e,)S,, it is easy to 
see that 

&,t, = el A Q. - ecy A QI,. 

S,, = -2Qa - Qe,:. 

s = -6Q. 

where 

QN = de,(v) + $e,(cpk&)e~. 
Q = e&,(v)) + 2eJcpMv). 

Using these formulae, one obtains straightforwardly the above relations. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

0 

From (3.1 l), one can derive the identity 

de” - w+ A e” + e” A oP = 0. (3.23) 

which is equivalent to the well-known relation de: + W,& A el = 0. From (3.11) and (3.13) 
one can verify that 

R+= dw+-w+r\w+. R-= dw-+w-r\w . (3.24) 

relations which are equivalent to the definition of the Riemann 2-form R,b = duuh + w,,. A 
0&b. Other basic relations could be obtained in a similar manner. 

Expressions of the Pontryagin density y = (1/8n*) Wnb A Wah, where W& is the Weyl 
2-form, and of the Euler density E = (1/32n2)e,bCdR,b A &d can similarly be obtained. 
For a locally conformally flat metric such as R, one obviously has 

y = 0. (3.25) 

E is explicitly given by 

2 t= - 
0 

’ {12[Z(e(cp)) + 2]e((p)1212 * 1 
37 

- Re[(dZ(cp) - Z(e(cp))r”) A *(de(q) - Z(4cp))2”)11. (3.26) 
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Proojf Itisknownthatr = (1/16n2)(W,~~*Wa~+~~Z~1-(Sa-~s~~)~~(S~-~se~)]. 
In the present case, W& = 0, as the metric is locally conformally flat. Using (3.19) and 
(3.20) and (3.21) and (3.22). it is straightforward to derive the above formula. 0 

3.2. Global quaternionic Riemannian geometry of a Kulkurni 4-fold 

The quaternionic tensors constructed in the previous section have very simple covariance 
properties on a Kulkarni 4-fold X. 

The matching is implemented by the Sp( 1) transition functions 

with r/$ given by (2.23). In general, these do not form a smooth Sp(l) I-cocycle, unless 
111 = 1, as, by (2.31) 

HLI’Y = w,pi,Q&Q;Y. (3.28) 

when U, f’ Up fl U, # I?. However, 0: @ 19z and 0: @ 0; are, respectively, a @p(l) x 
Sp( l))/Z2 1 -cocycle and a Sp( l)/Z2 1-cocycle. 

We assume that the local scales qa match as 

va =~~-lnlv~~l+lnl~~~l. (3.29) 

whenever U, n Up # fl. This is designed in such a way to render R = (ga) a globally 
defined metric (see (3.32) below). 

The matching relations for the einbein e = (e, } and e” = (e,V] are 

(3.30) 

and 

(3.3 1) 

Proo$ These relations follow readily from combining (2.24) (2.25) and (3.29) with (3.5) 
and (3.7). 3 

The matching relations of the metric R = {gal) are by construction 

&7 = fib. (3.32) 

on U, n Up # 0. As a consequence, the Hodge star operators *(y associated with the g, 
match as 

*u = *p. (3.33) 



For U, n Up # I/I, the matching relations for the spin connection I -forms (I? = ((!I;$ } 
are 

w,l = ~~$$(~~~)-’ f dH($(O$)~ ‘. (3.33) 

The matching relations for the Riemann 2-forms R* = (R$), the Ricci 1 -form S = { .T, ) 
and the Ricci scalar s = (,s,) are 

R,1 = O$R;(O$- ‘. (3.35) 

SC? = q&@(p’. (3.36) 

s, = .sp. (3.37) 

So, R* E R’(X, 0: @ 0:). S E Q’(X, 0: 63 0,) and s E Q”(X). 

Proofi The matching relation of the dual vierbein ex = (ew”, ) is of the form 

e \/ Ly<, = rcrgobeil,, (3.38) 

where r,p is some smooth S0(4)-valued function on U, n lip. Combining (3.6) and (3.38) 
and comparing with (3.3 1), one finds 

rafiolr + rugra .A, = Q$ (So0 + &,, j, 1 (f& I- ’ (3.39) 

As well-know one has QA = ra~lBacrap~wp~~f~ -drapoc~ru,v7c~ and &,I, = r,p,,,,r,p/,d Rpr, 
and S,,, = r,pabSph. Using (3.39) and definitions (3. lo), (3.12) and (3.14). it is straight- 
forward to check that (3.34). (3.35) and (3.36) hold. Relation (3.37) is obvious. 0 

3.3. Se&-duulity and thr Einstein condition 

Self-dual Einstein 4-folds form a broad class of Riemannian 4-folds, which has been 
intensively studied [ 141. Consider a Kulkarni 4-fold X equipped with the metric g of the 
local form (3.8). 8 is locally conformally flat and thus trivially self-dual. The Einstein 
condition, conversely, is non-trivial. 

The metric g is Einstein if and only if, locally, 

dr(cp) - Z(e(q))e” = 0. (3.40) 

The local solution of this equation is 

e0 =w+2Re(Gq)+~1Jq1~. withu,w E [w, u EW. (3.41) 

PYOI$ The Einstein condition states that S, - (s/4)ez = 0. Using definitions (3.6) and 
(3.14) and formulae (3.15) and (3.16), one gets readily (3.40). Explicitly, using (3.5) and 
(3.7), (3.40) can be cast as 

(3.42) 
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Now, for any smooth W-valued function f. the condition df’ - dqa,Lf = 0 restricts .f to 
be of the form f(q) = u + qb with a, b E W [7]. Hence. (3.42) entails that 

8qeP = $(IJ + qu). with u. ~1 E W. (3.43) 

From (3.43 ), using that e -v is real-valued, one gets 

de-+ = dq(C + Uq) + (~1 + qu) dq. (3.44) 

The integrability condition d’e- 9 = 0 yields the equation dq A (II - i) dq = 0, which. as 
is easy to see, entails that II - i = 0 or LI E [w. So. 

deap = d[2Re(Clq) + nlq]*], (3.45) 

which, upon integration, yields (3.41). 0 

For r/, f\ Up # M, we set 

(3.46) 

with Tag defined in (2.22) and rl$ given by (2.23). Then K,p does not depend on the choice 
of representative of Tap E PGL(2, W) in GL(2, 0-O). Further, K = (K,p] is a flat GL(2, W) 
I cochain satisfying relation (2.30) with Tap substituted by K,p. For an Einstein metric of 
the form (3.41) set 

Then one has the matching relation 

Mp = KzB M, KaB. (3.48) 

Proqf: In the proof of relation (2.30) it was shown that 1 q&/I q,$ I is a positive constant. 
Using this fact, (2.30) and (2.3 I), it is immediate to see that K = (K,p) is a flat GL(2, W) 
1 -cochain satisfying (2.30). Independence from choices of representative is evident from 
the definition (3.46) and from (2.23). The above matching relation follows from (3.29), 
upon writing 

(3.49) 

and using (2.22), (1.11) and (2.23). 0 

This result is interesting. It reduces the problem of finding a locally conformally flat 
Einstein metric to the problem of finding a flat positive definite section M = (Ma} of the 
flat I-cocycle SqK, where, for any A E GL(2. W), SqAU = AtUA, for U a 2 x 2 matrix 
on W. 



3.4. The c~orzformal d’Alemhertian W and the d’Alemhertiun U 

Let X be a Kulkarni 4-fold with the metric g of Eq. (3.X). The conformal d’Alembertian 
W of g is defined by 

W,f = d * dJ’ - $f * 1 (3.50) 

for f E Q’(X). So, Wf E Q4(X). W is simply related to the operator 0 is defined in 
(2.39). Indeed, eq f E R”(X. p) and 

Wf = 16eqU(e~f). (3.51) 

ProofI Combining (2.38) and (3.29) one verifies easily that epf E D”(X. p) if ,f E 
Q”(X). As is well-known, the operator W is conformally covariant. If go and g = e”ga are 
two conformally related metrics, then Wf = e” Wo(eh ,f ). If we take go to be the flat metric 
and g to be the metric (3.3), we get (3.5 I) readily. 0 

Eq. (3.5 1) entails immediately an isomorphism ker W 2 ker 0 of lQ linear spaces. 
A well-known argument a la Bochner shows that, if X is compact and s > 0 and s $0 

on X, then dim ker W = 0. So, on a compact Kulkarni 4-fold X such that the associated 
conformal class of locally conformally flat metrics contains a representative whose s has 
the above properties, dim ker 0 = 0, i.e. there are no harmonic F E Q’(X, p). 

3.5. The Dirac operator@ and the Fueter operators $R,L 

Let X be a Kulkarni 4-fold with w = 1 equipped with the metric g of Eq. (3.8). We set 
c+ = 0: and 6 = 0;. Owing to (3.28), as u! = I, the a* are smooth Sp(l) I-cocycles 
dependingonachoiceofaflatZ2 I-cocyclea.Weseta =~+@a-.So,anyh E Qn(X.o) 
is of the form h = hf $ h- with h* E Q”(X. a*). We set 

01, h2) = Re(hThi) + Re(h;h;) (3.52) 

for ht , h2 E Q’(X. a) and, for a vector field u on X, 
- 

$h = (h-(2”. CI)) $ ((2”. u)h+) (3.53) 

for h E D”(X. c). Then Q”(X, a) is a real Clifford module on (X, g) with Clifford inner 
product and Clifford action given, respectively, by (3.52) and (3.53). 

Proqf: If h* E Q”(X, o*), one has h, + = hi@; a (Y n d k; = HiDha, whenever defined. Fur- 

ther, I0$I = 1, by (3.27). Taking these relations into account, one verifies that (ht. h~)~ = 
(h t , JQ)~. So, the Clifford inner product is well-defined. Using the same relations once more 
and (3.31), one verifies also that (Q),f = (@);0& and ($h); = OiP(@)i. So, # maps 

linearly Q’(X, a*) into fl’(X, a?). Finally, one checks easily that (At, dA.2) = (@I. h2) 
and, by using (3.8), that ti2 = ,g(u, u) I. 0 
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For A E R”(X, Q), we define 

Dh = (dh+ + h+w+) $ (dh- + w-h-). (3.54) 

Then D is a Clifford connection for the Clifford module @(X. a). 

Pr@ Using (3.34) and the matching relations of h* given above, it is straightforward 
to check that (DA): = (Dh)$H,f, and (DA); = Q;j(Dh)j, whenever defined. So. D 
maps Q’(X, o*) into Rl(X. a*). D manifestly has the properties defining a connection 
on @(X. m). From the identity V,e‘y + (w,b, u)el = 0, where V is the Levi-Civita 
connection and u a vector field on X, and from (3.6) and (3. lo), it is straightforward to 
show that V,ev - (w+. u)c’” - e”(w-. u) = 0. Using this latter identity, one checks by 
simply applying definitions (3.53) and (3.54) that [D. $1 = V$. This shows that D is a 
Clifford connection. 0 

The Dirac operator43 associated with the Clifford connection D of the Clifford module 
Q”(X, a) is readily obtained: 

DA = (4((01)-, e)) $ (4(e, (DA.)+)). 

with h E sZ’(X, (T). This is very simply related to the Fueter operators &J_ defined in 
(2.44). Indeed, e(3i2)pph* E fi’(X, m*) and 

(3.56) 

Prmf: Combining (2.43), (3.27), (3.29) and the matching relations of the h*, it is easily 
seen that e(3/2)qk* E Q’(X, m*). From (3.1) (3.2) and (3.17) one has that o,b = 
6,i6;8_,jq dx’ - 8b,jshaxiq dxj. Using this relation, (3.5) and (2.2), it is easy to verify that 
((DA)+. F) = (if&g + ~h’&R)e-” and (2, (DA)-) = e-~(t$+h- + ~t3g~cpk-). Using 
these expressions in (3.55), one gets (3.56) immediately. 0 

It follows immediately from (3.56) that ker& 2: ker @lQ~~x,cr+J and ker &_ 2 

ker@l~qx.o-J~ where the first (second) isomorphism is left (right) W-linear. 
The Dirac operatorp satisfies the well-known Bochner-Lichnerowicz-Weitzenboek for- 

mulap* = --CID + is, with 0~ the d’Alembertian of the Clifford connection D. By a 
well-known argument a la Bochner, we see that, if X is compact and s > 0 and s f 0 on X, 
then dim kerD = 0. So, on a compact Kulkarni 4-fold X such that the associated conformal 
class of locally conformally flat metrics contains a representative whose s has the above 
properties, dim ker &J_ = 0, i.e. there are no Fueter holomorphic @ E fi’(X, m+) and 
P E QO(X. m-). 

When X is compact, one can compute the index of@), ind@, by using the Atiyah-Singer 
index theorem. One has 

ind@ = dtm kerplszo(x,n , + - dim ker@l~()(x.o~) = 0. (3.57) 
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Proo$ Using (3.53) and (3.54) and taking (3.24) into account, one finds that L)‘A - 

$ &/,&&~ = (h+(dw’ - 01~~ A (11~ - /?+I) @ ((dto- + co /\ (r) - R--)A-) = 0. The 
Clifford connection D has thus no twisting. In this case, the Atiyah-Singer index theorem 
gives indp = -& J, pl (X). On account of (2.54), ind$I = 0. i7 

When X is compact, we conclude from (3.57) that 

dim ker 3~ = dim ker 2~. (3.58) 

The number of right Fueter holomorphic sections @ E Q’(X. m+) equals the number of 
left Fueter holomorphic sections p E Q”(X. m ~ ). 

3.6. The isometry group of the metric g 

Given a metric g on X of the form (3.8). we denote by UAut(X, ,g) the subgroup of 
Aut(X) leaving g invariant. 

3.7. Exumples of special metrics 

Below, we shall consider the Kulkarni 4-folds of Kleinian type r\D, which were 
described at the end of Section 2. 

6) D = HP’. HP’ has the distinguished metric 

4Re(dj @ dq) 
g = (1 + lq(2)2 

(ii) 

g is nothing but the customary round metric of S”. As is well-known, g is Einstein 
with s = 12. UAut(W[FO’, g) is the subgroup of PGL(2, W) formed by those T such 
that IT1 1 I2 + IT21 I2 = lT2212 + IT1212 = k for some k E [w+ and T~I T12 + ?21 T22 = 0 
and is thus a proper subgroup of Aut ( W IFD ’ ) . 
D = I-U’. W’ has the distinguished metric 

g = 4Re(dq @ dq) (3.60) 

So, g is the flat euclidean metric of R4. UAut(W’, g) is the subgroup of PGL(2. I-0) 
formed by those T such that ) TllI = I T22 I = 1 and T21 = 0 and is thus a proper 
subgroup of Aut(W’). This metric induces a special metric on each Kulkarni 4-folds 
f \W’ since, as it is easy to show, every Kleinian group r for W’ is contained in 
UAut(W’, g). 

(iii) D = B1 (WI). B1 (W’) has the distinguished metric 

(3.59) 

4 Re(dq @ dq) 
g = (1 _ lq/2)” (3.61) 

As appears, g is nothing but the Poincark metric of B1 (R4). g is Einstein with s = - 12. 
One checks that UAut(BI (HI’), R) is the subgroup of PGL(2, W) formed by those T 
suchthatITIII’-IT21I’= IT2212-IT~212 =kforsomek E 1W+andT1lT,2-_2lTx? = 
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0, so that UAut(Bt (E-O’), g) = Am(B) (HI’)). Therefore, this metric induces a special 
metric on each Kulkami 4-folds f \Bt (W’) for every Kleinian group r for B) (HI’). 

(iv) D = l-0’ - (0). W’ - (0) has the special metric 

Re(dS @ dq) 
.r: = 

1412 
(3.62) 

One can show that UAut(W’ - [O). g) = Aut(W’ - (0)) [9]. Therefore, this metric 
induces a special metric on each Kulkarni 4-folds T\(W’ - (0)) for every Kleinian 
group r for W’ - (0). 

(v) D = W’ - R’. Hi’ - R’ has the special metric 

Re(dq 8 dq) 
.? = 

IImq12 
(3.63) 

It is possible to show that UAut(W’ - R’) = Aut(W’ - R’) [9]. Therefore, this metric 
induces a special metric on each Kulkarni 4-folds r\(W’ - R’) for every Kleinian 
grouprforW1 -[WI. 

4. Classical four-dimensional conformal field theory and Kulkarni geometry 

In this section, we consider first some general properties of a classical conformal field 
theory on a Kulkami 4-fold X. Later, we illustrate two basic models, the complex scalar 
and the Dirac fermion (see [ 151 for background). 

Below, we shall assume that X is compact. In this way, integrals are convergent and, as 
X has no boundary (see Section 2), integration by parts can be carried out without picking 
boundary contributions. 

4.1. The clmsical action 

The classical action of a conformal field theory on a 4-fold X is some local functional 
Z(@, e”) of a set of conformal fields @ and a dual vierbein e,“. By conformal invariance. 
for any smooth function .f on X, one has 

Z(eefn@, efev) = I(@, e”), (4.1) 

where A is the matrix of the conformal weights of the fields @. 
Consider now a conformally flat background e,” of the form (3.2). Because of conformal 

invariance, one has that 

I(@, e”) = I(4), (4.2) 

where 

4 = e’P”l$ (4.3) 

is a conformally invariant field. The functional Z(4) depends only on 4 and the underlying 
conformal structure. 
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As cp is delined only locally and the local representations match as in (3.29). the matching 
relations ofthe local representations of 4 are different from those of the local representations 
of @. On a Kulkarni 4-fold X. $ is a section of some vector bundle constructed from the 
rl* such as p and rxr*. 

4.2. The energy-momentum tensor 

In a classical field theory on a 4-fold X, the energy-momentum tensor is the l-form 
?;, (@. P” ), a = 0. I, 2, 3, valued in the orthonormal frame bundle, defined by the variational 
identity S,vZ = -(1/2n2)S~x(7,. 6e,) * 1, where 6,~@ = -iA&lne@ with e = detr” 
1151. If the held theory is conformal, the energy-momentum tensor is traceless and thus 
satisfies 

l(e,)l, = 0. (4.4) 

The invariance of the classical action Z under the action of the group of the automorphisms 
of the orthonormal frame bundle implies that, for classical field configurations solving the 
classical field equations, the energy-momentum tensor is symmetric and conserved [ 151. 
The symmetry is encoded in the relation 

I, Ae,V =O. (4.5) 

The conservation equation can be cast as 

d * ?; + O,I, A *Ib = o. (4.6) 

For a classical conformal field theory, one has 

?;I(eP,f’n@, e-fev) = e-“f?;(@. eV) (4.7) 

for any smooth function ,f. This is an immediate consequence of the conformal invariance 
of the action (Eq. (4.1)) and of the definition of 7,. Consequently, in a locally conformally 
flat metric background e: of the form (3.2), one has that 

I,(@. r”) = G,;e-“9T;(q5), (4.8) 

where the Ti(@), i = 0, 1.2, 3, are l-forms depending only on 4 and the underlying 
conformal structure. They can be assembled into the quatemionic field 

T = ;(fij - T,.j,). (4.9) 

Then it is simple to verify that the tracelessness relation (4.4) takes the form 

Re(Tl(ai)) = 0. 

For classical field configurations, the symmetry relation (4.5) reads as 

(4.10) 

Re(dq A T) = 0. (4. I I ) 
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while, more importantly, the conservation equation (4.6) becomes simply 

d*T=Q. (4.12) 

This equation no longer contains any explicit dependence on the scale (o of the metric 
background. Its validity depends crucially on the tracelessness and symmetry relations 
(4.10) and (4.11). 

Pnjo$ Relations (4.10) and (4.11) are trivial consequences of (4.4) and (4.5) following from 
(4.9) (3.1) (3.2), (3.5) and (3.7). Relation (4.12) follows from substituting (3.9) (3.17) and 
(4.8) into (4.6) upon using (3.1) and (3.2), and (4.4) and (4.5). G 

On a Kulkarni 4-fold X, T E sZ’(X. 53). where <j is given by (2.34). 

Pro@ By (4.8) and (4.9), one has 

T, = tejVa (7& - I,,,j,). (4.13) 

Now, on U,? n Up # !A, one has 

7,, = ~&Yh$h. (4.14) 

where rolp is the same S0(4)-valued function as that appearing in (3.38). Combining (3.27), 
(3.29), (3.39) and (4.14) and recalling (2.34), one checks easily that the matching relation 
of the T, is the required one. n 

In general, for an object of the same tensor type as T, the conservation equation (4.12) 
would not be covariant. In the present case, it is thanks to the tracelessness and symmetry 
properties (4.10) and (4.11). 

4.3. The U( 1) current 

In a classical field theory with a U( 1) symmetry, the U( 1) current is the 1 -form ,‘J(@, e”) 
defined by the variational condition &Z]JQ=;~Q = - (1/2n’) [, J A * df‘ for any function 
.f [ 151. For classical field configurations solving the classical field equations, J satisfies 
the conservation equation 

d * ;7 = 0. (4.15) 

For a classical conformal field theory, one has 

J-(e--.f”@, ,.t r”) = edfJ(@, e”) (4.16) 

for any smooth function f. This is an immediate consequence of the conformal invariance 
of the action (Eq. (4.1)) and of the definition of J. In the locally conformally flat metric 
background ez of Eq. (3.2). one has then 

J(@, e”) = eP2’PJ(@), (4.17) 



where J (4) is a 1 -form depending only on 4 and the underlying conformal structure. The 

conservation equation (4. IS) takes then the form 

d*J=O. (4.18) 

Proc$ This follows readily from (4.15) upon combining (3.9) and (4.17). II 

This equation no longer contains any explicit dependence on the scale cp of the metric 
background. 

If X is a Kulkami 4-fold, J E fZ’(X. p’), where p is defined in (2.38). 

Pror$ Immediate from (3.29) and (4.17). 0 

Then, by (2.29), *J E Q2” (X). The conservation equation (4.18) is thus manifestly 

covariant. 

4.4. The hiquaternion algebra 

The models examined below involve the complexification of the quatemion field W, the 
complex biquatemion algebra W @ @. In this brief algebraic interlude, we recall a few basic 
facts about W @I C and introduce basic notation. 

Here and below, to avoid possible confusion with the corresponding quaternionic oper- 
ations, we denote complex conjugation by - c and complex real (imaginary) part by Re, 

(Im,). 
A generic element z E W &I C can be represented as a real linear combination of elements 

of the form a @J<, where a E W and 5 E c. As a complex algebra, W@c carries a conjugation 
- defined by a @ [ = 2i @ & and an antilinear involution - defined by a-5 = a @ cc. ’ 
W can be canonically identified with the subalgebra of W @ @ fixed by -. The action of the 
conjugation - on this subalgebra coincides with the quaternionic conjugation - as defined 
earlier. 

There is a canonical algebra isomorphism c : @(2) -+ W @ C, where C(2) is the complex 
algebra of 2 x 2 complex matrices. Denoting by r,r, f’ = 1,2,3, -i times the standard Pauli 
matrices, c is uniquely defined by c( 12) = 18 1 and c(rf) = ,jf @ 1. The isomorphism c has 

the properties that det M = t(M)c(M) and that c(MT) = C(M) and c(C-‘fi,C) = (7(M) 
for any M E C(2), where 

is the conjugation matrix. 

5 A conjugation (antilinear involution) K on a complex algebra A is an antilinear map K : A + A such 
that K’ = 1~ and that, for u. h E A, K(ab) = K(b)K(u) (K(d) = K(u)K(b)). 
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4.5. The complex scalar 

Consider a complex scalar field @ with action 

141 

s d4xg1’*[g’ja;&;l;@ + @$$]. (3.19) 

x 

where g is the metric corresponding to eX and s is the Ricci scalar. The field @ has con- 
formal weight A = 1. It is well-known that the above action is conformally invariant 
1151. 

The conformally invariant field 4 corresponding to @ is thus given by 

4 = eV@. 

Then I$ E B’(X. p) @ C=, where p is defined in (2.3X). 

Proo$ Follows from (3.29). 

(4.20) 

3 

In terms of 4, the action functional is simply 

(4.21) 

where 0 is defined in (2.39). The integrand belongs to Q4(X), as 04 E R”(X, p-l) @ @, 
and integration is thus well-defined. 

Proo$ This follows from substituting (3.20) and (3.22). upon using (3.1), and (4.20) into 
(4.19), by a straightforward calculation. 3 

The classical field equations of @ are [ 151 

V”?j@ - is@ = 0. 

In terms of the field 4, they read simply as 

04 = 0. 

(4.22) 

(4.23) 

i.e. 4 is harmonic. See the discussion of Section 3 concerning the solutions of this 
equation. 

The energy-momentum tensor of the complex scalar @ is given by [ 151 

?;(@, 6,. e”) = Re,{{[&;,eiVjVi@ - {6,VkVk@e,yi] 

- 4[eiVj6,V;@ - $VkCScVk@CL\;] 

- $[Sai - $SeIi]6jc@) dx’. (4.24) 



One can verify that (4.8) holds. The conformally invariant energy-momentum tensor T i\ 
given hy 

7‘(4. &) = -$$,&d@ - $&d?1,,$ + a&d& - +d,di),,& 

- (&$,a,$ - $&“&/#J + &$&,& - &&+jc) dq}. (4.25) 

We have checked that T satisfies (4.10) and that (4. I 1) and (4.12) hold, when 4 fulfills the 
field equations (4.23). For a field configuration 4 satisfying (4.23), the second and fourth 
term proportional to dq in (4.25) are zero. 

The model considered has an obvious U( 1) symmetry. The corresponding U( 1) current 
is 

J(@, 6,. e”) = 2Im,(@$$,) d-r’. (4.26) 

It is easy to see that (4.17) is fulfilled with 

J(@. &) = ;(@d& - &d$). (4.27) 

One verifies readily that J satisfies (4.18), when 4 satisfies the field equations (4.23). 

4.6. The Diruc fermion 

Suppose that w = 1, so that X is spin, and let us fix the spin structure. Consider a euclidean 
Dirac fermion field P. P E flti’(X, Cf $ C-), where C* are the positive/negative 
chirality spinor bundles and the notation l7V indicates the Grassmann odd partner of a 
vector space V. 

The Dirac action is 

Z(P, PJ. e”) = $ 
.I 

d4x ei PJ yu ei D,i P, (4.28) 

x 

where D is the spin covariant derivative, D,i (I/ = (aj + iwclhi y, yh)ly, the ycz, u = 0. 1. 2, 3, 

being the euclidean gamma matrices satisfying ya yh + yc,yrr = 2&h and vd, = yo. The 
field @ has conformal weight A = 312. As is well-known, the above action is conformally 
invariant [ 151. We shall write the action in a way such that its connection with the underlying 
Kulkarni geometry becomes manifest. 

Fix un E C’, uu # 0. We define a linear map Q : C2 + W @ C by 

Q(U) = c(lvol-2~ @ u,‘,), u EC2. ‘ 

where c has been defined earlier. 

(4.29) 

The Dirac fermion field P can be thought of as a pair of Weyl fermion fields (P+. WI/- ) 
with P* E flR’(X, C*). We set 

r+/+ = $/*qQ(q+), $- = e3/2’pQ(q-). (4.30) 

Then $* E fl(L?“(X, m*) @ C), where the no* are defined in (2.43) 
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Proo$ SU(2) corresponds precisely via c to the group Sp( 1) of unit length quaternions in 
W. Further, as detU = 1 and U = C-‘l?,C = UC-‘+ for U E SU(2), one has c(U) = 
C(U) = C(U)-’ whenever U E SU(2). Now, comparing the basic relation 

I’cuBOrr 12 + rc@rn 5, = c,+p@otll~ + s,,,s<m~~)-‘. 

satisfied by Z$, and the relation 

14.3 I ) 

r,go012 + roljk rr, = (’ -‘~~c;p)(~Oo12 +6,,,Sp,(.-‘((~~)~‘). (4.32) 

following from (3.39), and recalling that c-‘(Q$) E SU(2) as fl$ is Sp(1) valued, one 
concludes that 

c&/J = 0$. (4.33) 

provided the spin structure entering into the definition of 8* is suitably chosen. Now, from 

(4.29) one has that Q<Uu) = c(U)Q(u) and G(Uv) = ~(u)c(U)-’ for U E SU(2) and 
11 E f7@“. Hence, 

QWJ = QV,-,@$ = G,-,,QW$ = HGQWi). 

From here, it is easy to show the statement combining (4.30), (3.29) and (3.27). u 

In terms of I/I*, the action functional can be written as ’ 

Pro@ Using (3.17) and the formulae 

Yg=i(_i2 :i), h=i(_U, 

(4.35) 

(4.36) 

one can cast the action integral (4.28) as 

2n22(!P, @Ct. e”) = +4Re, 
s 

[(e(“/2)~@~+t)(ao12 + air;)ne(3/2)~V] * 1 

X 

= -4Re, 
s 

[e(3’2)VPL?‘(i)u12 + a;ri)t(e”‘2)pP-)] * 1. (4.37) 

X 

’ The relative minus sign is due to the anticommuting nature of the fields P* 



114 K. Zzl~c.hirli/Jol/nlcrl of Gro~wtrv rrrzrl P/IICS;C\ 27 ( IYYX) l/3-/.5.1 

One can show that Re,(&r~t ) = /r~a]2Re(Q(ri~)Q(ut) - &u2)fi(vl)) for 1~1, 112 E L7Cz’ 
and that Q(Uu) = c(CI)Q(u) and Q(LIt!) = ~(l/)Q(u) for U E SU(2) and I! E 174:'. 

From here, using relations (2.2), (2.8) (2.9) and (2.44) and definition (4.30). one gets the 
above result. II 

The classical field equations of II/ are [ 15 1 

y,e; DiW = 0. 

In terms of +*, they read simply as 

lj+aR = 0. &l+- = 0. 

(4.38) 

(4.39) 

Hence, ++ (I/-) is right (left) Fueter holomorphic. See the discussion of Section 3 con- 
cerning the solutions of these equations. 

The energy-momentum tensor of the Dirac fermion 9 is [ 151 

‘& (P, PJ, e”) = Re, YhehVj e f: Dk + ya Di 

- ~e~iYbe~Dk + S[Y~,. Yckc~Yhe~Dk 9 I I dxj. (4.40) 

It is straightforward though a bit lengthy to check that (4.8) holds. The conformally invariant 
energy-momentum tensor T can be computed. One finds 

= ;lvo1*{-& d$+ + @- d$+ + d&q+ - d@-$+ 

+ dq($+$- - ~I;+$_)&/R + (Q-4+ - 6++)&jR d+ 

+ i(aqL$+u_ - aqLj;+& + &q’+aqR - +-$+a+)dq 

+ ; dq(ll/+$_ayR - y/+$-aqR + a+$-++ - +t+-G+)] 

= &.#-$ d$+ + $- d$+ + d$-$+ - d+-$+ 

- ayL(i+$- - $+$-I dij - dqa,L($-1CI+ - s-q+> 

- $(aqLl;ii+G_ - a,$+& + $-$+ifyR - &+aqR)dq 

- $ dq($+G_aqR - G+$-aqR + a,&++ - aq120+u. (4.41) 

We have checked that T fulfills (4.10) and that (4.11) and (4.12) hold, when the $’ fulfill the 
field equations (4.39). For a field configuration $* satisfying (4.39), the terms proportional 
to dq vanish identically, simplifying the above expressions. 

The Dirac action has an obvious U (1) symmetry. The corresponding U (1) current is 
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It is easy to see that (4.17) is fulfilled with 

J(++, I/-. $+, $-) = luo12 Re(i$+ dq r,L + i++ dq $-). 

./ satisfies (4.18), when the I/,* satisfies the field equations (4.39). 

11s 

(4.43) 

5. Quantum four-dimensional conformal field theory and Kulkarni geometry 

in this section, we consider first some general properties of a conformal quantum field 
theory on a Kulkarni 4-fold X concentrating on the quantum energy-momentum tensor. We 
then analyze the properties of the operator product expansions for the simple free models 
studied in the previous section. 

Below, we shall assume that X is compact. 
In a quantum four-dimensional conformal field theory, the local classical action I(@. e”) 

is affected by quantum corrections. The resulting effective action I&(@, e”) is a non-local 
functional of @ and e,“. In general, Z&Q, e”) is no longer conformally invariant but, con- 
versely, suffers an additive conformal anomaly. We assume that. for any smooth function ,f’. 

7 e (ee”@, e’e”) = &(f, e”) +I,(@. e”). (5.1) 

where & ( j’. e”) is the Riegert action. which is local and independent from @ [ 16,171. 

5. I. The quuntum energy-momentum tensor 

One can define the energy-momentum tensors 7,, (Cp, e”) and 7~‘~ (f, e”) for the actions 
7, and 7~ in the same way as done in the classical case: C&V& = -( l/2n2) s, (I,,, 6e,) * 
1 and 8e~7R = -(1/2~r~)/~(7n~,~?e~,) * 1, where S,J~ = -;6lne. Because of the 
conformal anomaly, 7,, and 7Ru do not satisfy a condition of tracelessness analogous to 
(4.4). However, since invariance under the automorphism group of the orthonormal frame 
bundle is not anomalous, I,,, still satisfies (4.5) and (4.6) in the vacuum, i.e. at vanishing 
held configurations. So, I,,, I@=() is symmetric, 

7c,, A e&b=” = 0. 

and satisfies the Ward identity 

(d * 7,, + W,/I A *7&J I @=O = 0. 

(5.3) 

(5.3) 

7~~~ is also symmetk 

7~~~ /? e,: = 0. 

while its Ward identity reads 

(5.4) 

d * 7Ra + C&I, A *In/? + ($ d& - CR d f ) A *e,y = 0. (5.5) 

where the functional CR(f, e”) is defined by c?~ZR = +(1/2n’) & CR6f * 1. The origin of 
the extra terms in the Ward identity (5.5) is easily understood. If 7R were the classical action 



of some automorphism invariant field theory, they would be absent for a held ,f’ satisfying 
the classical held equation Cn = 0 and (5.5) would be analogous to (4.6). 

There is another piece of information that is relevant and does not follow directly from 
(5.1). One has 

CR((). e”) = 0 on any open set of X, where R,h = 0. (5.6) 

This identity can be justified by noting that, on dimensional grounds, &(O, e”) is the sum 
of two contributions. The first is quadratic in the components of the Riemann a-form R,h 
and the derived forms. The second is proportional to d * ds, where s is the Ricci scalar. 
Both contributions vanish in the regions, where the background e,V is flat. 

Because of the anomalous breaking of conformal invariance in the quantum theory, Z,, 
does not satisfy a relation of the form (4.7) in the locally conformally flat background of 
Eq. (3.2) and therefore it does not have a structure like that exhibited in (4.8). However, it 
is still possible to extract from T,, a part T,; (4) depending only on $ and the conformal 
geometry of the base manifold X. Indeed, 

I,,,(@, e”) = e-“‘[&;T,i(r$) f &,((D. e-‘e”)]. (5.7) 

where 

&a = &, + $cRez. (5.8) 

Since the action & is local, 7~~ and CR are local expression in the fields f and e,” involving 
no integration on X. They are, therefore, defined also when f and e,: are replaced by the 
local scale p and the local dual vierbein e@ey. The covariance of the composite fields 
obtained in this way is, however, quite different from the original one, as will be shown in 
a moment. Now, one can verify that Z’ei (4) is conformally invariant, as suggested by the 
notation. Following (4.9), one sets 

Te = $(T,o - T,,.L). (5.9) 

Then one can verify that T, is traceless: 

Re( T,l(i3,)) = 0. (5.10) 

Further, in the vacuum, i.e. when 4 = 0. Te is symmetric and conserved, so that 

Re(dq A T,)I+o = 0 (5.11) 

and 

d * T&z0 = 0. (5.12) 

ProojI We give only a sketch of the proof. By varying (5.1) with respect to ,f and e,“, one 
obtains 

e3f’(7e,(e-f”@, efev), e,) - CR(f, e”) = 0, (5.13) 

e3f7,,(e-,f”@, e,fe”) - I,,(@. e”) - 7&(f, e”) - $Cn(f. e”)ez = 0. (5.14) 
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From (5. l), it follows that the action Zn satisfies the so-called I-cocycle relation 

zR(,fl + .f2. e”) - &(fl. e”‘e”) - &(f2. e”) = 0 (5.15) 

for any two smooth functions f’t , fz. By varying this identity with respect to ,fi , ,f2 and cc:, 

one obtains 

CR(f’j + f2, e”) - e”“CR(fl. &C?“) = 0, (5.16) 

e3’fz (&(,fl, &e”). err) f CR(f2, e”) = 0, (5.17) 

%cr(.f’l f .f2, e”) - e”fi%a(,fl, efiev) 

-7&(.f2. e”) - $CR(.fi, ev)ecy = 0. (5.18) 

Define &(@, cp, e”) = e”VI&n(e-(P”@, e”) - &a((P, e- qe”). Using (5.14) with 0 substi- 

tuted by ee”“# and (5.16) and (5.18) with fl, f2 and e,V substituted by f, cp and eeqe:, 
respectively, one verifies that E(,(@, cp + f, ef e”) = &(@. cp, e”), showing the conformal 
invariance of E,(@, cp, e”). Thus, 

T,i($) = 8;a[e3’7eo(e-PA$J, e”) - &u(V. e-‘e”)] (5.19) 

depends only on 4 and the background conformal geometry. Using (5.13) with Cp, f and eLy 
replaced by +!I, cp and e-9 ” e, and (5.17) with J’l, ,f2 and e,” substituted by q, 0 and e-(+‘eX, 
respectively, one verifies that Sial(e’Pen)Tei(#) = Cn(0. e-9e”). Cn(0, e-9e”) = 0, by 
(5.6) because, by (3.2), the local background e -9e,” is flat. SO, 8icrl (e’Pe,)T,i (4) = 0. This 
relation yields (5.10) immediately upon using (5.9) and recalling (3.1) and (3.5). Finally, 
from (5.2) and (5.4). we obtain the symmetry relation &, 7’ei (0) A e-pey = 0. From here, 
(5.11) follows upon using (5.9) and recalling (3.2) and (3.7). Next, by using the symmetry 
relation (5.2) and the Ward identity (5.3) and exploiting relations (3.9) and (3.17), one has 

d * [e”pI,,,(O. e”)] =eV[dq A *x,(0, e”) + d * I,,,(O, r”)] 

=eV((leh(O, e”). eh) dp A *eX. (5.20) 

From the Ward identity (5.5) with f and ex replaced by p and e-qpez, one deduces further 
that 

d * &N((P, e-‘e”) = CR(q, e-‘e”) dp A *e-‘ey. (5.21) 

In deriving this relation, one uses that d * (e-pey) = 0, by (3.2). Now, by (5.19) d*T,i (0) 
is given by the difference of the left-hand sides of Eqs. (5.20) and (5.21), which vanishes 
by (5.13) with @, f and e,” replaced by 0, cp and e -9e,” and by (3.2) and (3.9). Hence. 
d * Tei (0) = 0. From here, using (5.9), (5.12) follows. 0 

The above treatment is essentially a reformulation of the classic results of Ref. [ 181 
highlighting the connection with Kulkami geometry. 

As noticed earlier, T, does not transform as its classical counterpart under coordinate 
changes. In fact, on U, fl Up # M, one has 

T,, = <sap (Tep + elvp 1. (5.22) 



where (7 is defined in (2.34) and 

(5.23) 

=e -“““ru~u~~]7R~h((P~. e??‘e~) - &jh(t@j, e-“ei) 

- $cR(t@. e-‘fie~)ep’“P~~,]. (5.24) 

where rap is the same S0(4)-valued function as that appearing in (3.38). Here, the first 
identity is proven by applying (5.18) with ,ft , .fz and e(y substituted by qua, -cpol and e&,, 
respectively. The second identity follows from (3.29), (3.38) and the relation 

%orcJ = r@ahlRph (5.25) 

analogous to (4.14). The third identity is proven by applying (5.18) with ,ft , ,f2 and eLy 
substituted by (OS, -‘pg and e;;,, respectively. The fourth and final identity is shown by 

applying (5.17) and (5.18) with ,f’t , ,f2 and e(y substituted by Q, -(OB and e&, respectively. 
Next, one has 

CR((Pa, e-VWe~)e-VWe&, =e”“CR(O. e,“)t’l,, 

= c3’Pp-ir,iJr;B,hCR(0. ei)eih 

_ -3,/d . ?ugcr[$R(qfi, epv”e~)e-‘pe$l. (5.26) 

The first identity is obtained by applying (5.18) with .f’t. ,fz and e,: substituted by qa, 

-(pat and e,V, respectively. The second identity follows from (3.29) and (3.38). The third 
identity is proven by applying (5.17) with f’l, f and eLy substituted by ‘pp, -‘pb and e&,,, 
respectively. Combining (3.27) (3.29), (3.39), (5.24) and (5.26) with (5.8) and (5.19) and 
recalling (2.34), one checks easily that the matching relation of the TRY is given by (5.22) 
and (5.23). 0 

The compatibility of (5.22) and (5.10)-(5.12) entails the following relations: 

Re(e,sr(aqs)) = 0, (5.27) 

Re(dqg A pap) = 0, (5.28) 

d kB eUg = 0. (5.29) 
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Proof The verification of (5.27) and (5.28) is completely straightforward. To show (5.29). 
one has take into account the fact that, if local quaternionic 1 -forms v, satisfy Re(u,l (a~,)) = 
0 and Re(dq, A v,) = 0, then the equation d kol v, = 0 is covariant under the matching 
relation u, = &pup. 17 

From (5.33), it appears that ecug depends only on the underlying conformal geometry. So. 
the matching relation (5.22) is completely analogous to that of the conformally invariant 
energy-momentum tensor in two-dimensional conformal field theory and eLVp is a four- 
dimensional generalization of the Schwarzian derivative. 

The form of the conformal anomaly [ 19,201 is determined up to a term of the form SK(r ” ). 
where 6 denotes variation with respect to the scale of e,y and K(e”) is a local functional of 
c(, The form of the anomaly can be rendered simpler by means of a convenient choice of 
k‘. A further simplification is yielded by the local conformal flatness of the background e,: 
oCEq. (3.2). which makes the contribution containing the square of the Weyl tensor vanish 
identically. In this way the conformal anomaly can be cast as 

sz, = Lt.-- 
128x2 S[ 32j~‘~ - ;d + ds (Se;. r,,), 1 

X 

(5.30) 

where E is the Euler density, defined above (3.25), and s is the Ricci scalar. K is a real 
coefficient called central charge. In fact, the expression of the anomaly is simpler than it 
looks at first glance. A detailed calculation, exploiting the local conformal flatness of c?;;. 
shows that it can be written in the form 

where il = &d * d is the d’ Alembert operator. In this form, the similarity with the standard 
two-dimensional case is apparent. As a byproduct, we learn also that 0 * 0~ belongs to 
Q’(X), an interesting geometric result. 

The Riegert action corresponding to the anomaly (5.19) is given by [16.17] 

K 
&(,f: e”) = ~ 

16n2 s 
[d * df A *d * df’ - $sdf A *df 

x 

+ 2e,(f)S, A *df + (16n% - id * ds)f]. (5.32) 

In the locally conformally flat background e: of Eq. (3.2), & can be written as 

&(.f.q) = F s [;.f"*o.f+o*o~.fl. 

X 

(5.33) 

When written in this form, the resemblance of the four-dimensional Riegert action and the 
well-known two-dimensional Liouville action is striking. The calculation shows also that 
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0 * 0 is a globally defined differential operator of order 4 mapping sZu(X) into Q’(X). i 
It is now straightforward though quite tedious to compute T,. Set 

P(f’) = 4df’&, * ??.f + 48, f’d * D,f’ - & da, * (d,/ A * df) 

+ ; dx’ * (d?IVi,f’ A *d&,,f’) - 8 d&S * u,/- - ; di), * of 

+ d@8(*0,f)2 - i * •I * (df A *df) + $’ * 0 * of]. (5.34) 

Then T,(4) is given by 

T,(4) = e”‘P7,(e-‘P”@. P”) - UP, (5.35) 

where ‘& = i(leu - ‘&,j,). The four-dimensional Schwarzian derivative ewg defined in 
(5.23) is given explicitly by 

eag = K~~(ln(lrl~~lllrl~~I)). (5.36) 

5.2. The operator product expansions 

We shall now analyze the structure of the operator product expansions for the simple free 
models studied in Section 4. 

Consider the complex boson @ described by the action (4.19). The quantum theory is 
best formulated in terms of the conformally invariant field 4 governed by the action (4.2 1). 
Inside normalized conformally invariant quantum corelators, the classical field equations 
(4.23) hold up to contact terms 

04 = 0 up to contact terms. (5.37) 

Hence, the corelators are harmonic in the insertion points of the field 4 and its complex 
conjugate, provided such points remains distinct. Since a real harmonic function can be 
expressed as the real part of a Fueter holomorphic function (71, Fueter analyticity is relevant 
in this model. From the form of the action (4.21), it follows in particular that 

-$#G?2Pl&(ill) = S4(q2 - 41) * 12. 

-Ao,qQ2)&(ql) = J4(q2 - 41) * 1 I. 
x2 

This relation can be easily integrated on a given coordinate patch, yielding 

@(q2Gcc(41) = 2,q2 L q,,2 + regular harmonic terms. 

(5.38) 

Proofi From distribution theory, one can show easily that i+ay Iq -qop2 = -(r2/4)S4(q - 
qo) in ‘D’(W). Further, it is known [7] that there is no singular harmonic function less singular 
than lq - qol-*. cl 

’ This operator, as many others, could have been included in the list of the natural differential operators of 
a Kulkami 4-fold studied in Section 2. To keep the size of this paper reasonable, we decided to limit our 
discussion to 0 and L&L. 
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Consider the Dirac fermion ly described by the action (4.28). It is more convenient to 
formulate the quantum theory in terms of the conformally invariant fields +’ governed by 
the action (4.35). (We assume lzlu] = 1 here for the sake of simplicity). Inside normalized 
conformally invariant quantum corelators, the classical field equations (4.39) hold up to 
contact terms 

l)‘$ = 0, a~*- = 0 up to contact terms. (5.40) 

Hence, the quantum corelators are right (left) Fueter holomorphic in the insertion points of 
the field I/J+ (I/-), provided such points do not coincide. This statement must carry a wam- 
ing. Since the fields @* and the Fueter operators an,L are valued in the non-commutative 
quatemion field, the statement holds provided an (3~) acts on @+ (I,!-) within the corela- 
tors. The above shows the relevance of Fueter analyticity in the present fermionic model. 
From the form of the action (4.35) it follows in particular that 

$-(%‘)$+(&R1 = s4(qz - w)diz. 

-$d-(qd$+irid = J4(qz - ql)dil. 

(5.41) 

This relation can be integrated on any given coordinate patch, producing 

l,/-(qz)$+(q,) = 42 - s1 
I42 - 41 I4 

+ terms right (left) Fueter holomorphic in q1 (qz). 

(5.42) 

Procl$ From distribution theory, one knows that [(?j - &)lq - q01-4]ajR = a+[(g - 
jo)[q - qol-4] = (n2/2)S4(q - qo) in D’(W). Further, it is known [7] that there is no 
singular left/right Fueter analytic function that is less singular than (9 - 40) 14 - 40 1-j. 0 

The above analysis shows that Fueter analyticity provides useful information on the 
structure of the operator product expansions of free fields. It remains to be seen if this will 
be of any help in computations. 

6. Conclusions and outlook 

In the first part of this paper, we have tried to formulate the theory of Kulkami 4-folds 
in a way that parallels as much as possible the customary formulation of the theory of 
Riemann surfaces, highlighting in this way their analogies. This has been possible thanks 
to the existence of an integrable quatemionic structure and of an associated natural notion 
of analyticity, Fueter analyticity. We have also seen that a Kulkami 4-folds is equipped with 
a canonical conformal equivalence class of locally conformally flat metrics and that the 
Riemannian geometry of such metrics is particularly simple. 

In the second part of the paper, we have argued that Kulkami geometry is the natural 
geometry of four-dimensional conformal field theory by showing that the action functional, 



the field equations, the energy-momentum tensor and its Ward identity and the operator 
product expansions take a simple form for a conformal field theory on a Kulkarni 4-fold. 

We have not analyzed yet the implications of the geometric setting on the operator product 
expansion of the energy-momentum tensor. This matter is left for future work [2 I]. WC 
believe in fact that the customary energy-momentum tensor, describing the response of 
the system to an arbitrary variation of an arbitrary background metric, might not be the 
relevant geometric field. One should consider instead a modified energy-momentum tensor 
representing the response of the system to an arbitrary variation of an arbitrary locally 
conformally flat background metric preserving local conformal flatness. This would be the 
true analog of the energy-momentum tensor of two-dimensional conformal field theory, as 
for a 4-fold admitting locally conformally flat metrics. unlike for a 2-fold. not all metrics 
are automatically locally conformally flat. One may speculate that the improved energy- 
momentum tensor just described might obey operator product expansion of universal form 
as in 2 dimensions. This remains to be seen. In any case. to carry out the above project 
requires the elaboration of the Kulkarni analog of the Beltrami parametrization of conformal 
structures, a major mathematical task in itself with ramifications also in geometry. 
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